Hyperosmolar solution effects in guinea pig airways. I. Mechanical responses to relative changes in osmolarity.
نویسندگان
چکیده
In the guinea pig isolated perfused trachea contracted with serosal methacholine (MCh), increasing the osmolarity of the mucosal bathing solution elicits relaxation of smooth muscle mediated by epithelium-derived relaxing factor (EpDRF). The present study was undertaken to determine whether a specific modality of the hyperosmolar stimulus induced the relaxation response. Mucosal hyperosmolar challenge with D-mannitol, N-methyl-D-glucamine (NMDG)-chloride, NMDG-gluconate (NMDG-Glu), or urea elicited relaxation with equal potency. In contrast, hyperosmolar solutions at the serosal surface induced diverse, osmolyte-specific responses. In tracheae contracted with MCh, abrupt replacement of the mucosal modified Krebs-Henseleit solution (MKHS) with isosmolar osmolyte solutions to stimulate cell shrinkage elicited five discrete response patterns related to the membrane permeance of the solute, but increasing the osmolarity of the isosmolar solution via the further addition of the same solute always induced relaxation. Similarly, perfusion of the lumen with water induced a transient contraction, but subsequent addition of MKHS, or isosmolar D-mannitol, urea, NMDG-Glu, NaCl, or KCl induced relaxation. Subsequent hyperosmolar addition of the same osmolyte-evoked relaxation. Compatible osmolytes had no effect on smooth muscle tone and did not affect responses to hyperosmolar challenge. The results suggest that the airway epithelium acts as an osmolarity sensor, which communicates with airway smooth muscle through EpDRF. The mechanical responses of the smooth muscle resulting from changes in the osmotic environment are associated with discrete modalities of the osmolar stimulus, including membrane reflection of the particles, incremental change in osmolarity and directionality, but not cell shrinkage.
منابع مشابه
Hyperosmolar solution effects in guinea pig airways. II. Epithelial bioelectric responses to relative changes in osmolarity.
Osmotic challenge of airways alters the bioelectric properties of the airway epithelium and induces the release of factors that modulate smooth muscle tone. Recent studies in our laboratory suggested that methacholine-contracted airways relax in response to incremental increases in osmolarity, rather than from cell shrinkage or absolute solute concentration. In the present study, guinea pig tra...
متن کاملChanges in smooth muscle tone during osmotic challenge in relation to epithelial bioelectric events in guinea pig isolated trachea.
The relationship between epithelial bioelectric events and epithelium-dependent relaxant and contractile responses of airway smooth muscle in response to hyperosmolar and hypo-osmolar solutions was investigated in guinea pig isolated trachea. Tracheae were perfused with normal or nonisosmotic modified Krebs-Henseleit solution while simultaneously monitoring transepithelial potential difference ...
متن کاملHyperosmolar solution effects in guinea pig airways. IV. Lipopolysaccharide-induced alterations in airway reactivity and epithelial bioelectric responses to methacholine and hyperosmolarity.
We investigated the in vivo and in vitro effects of lipopolysaccharide (LPS) treatment (4 mg/kg i.p.) on guinea pig airway smooth muscle reactivity and epithelial bioelectric responses to methacholine (MCh) and hyperosmolarity. Hyperosmolar challenge of the epithelium releases epithelium-derived relaxing factor (EpDRF). Using a two-chamber, whole body plethysmograph 18 h post-treatment, animals...
متن کاملSelective stimulation of jugular ganglion afferent neurons in guinea pig airways by hypertonic saline.
We evaluated the ability of hyperosmolar stimuli to activate afferent nerves in the guinea pig trachea and main bronchi and investigated the neural pathways involved. By using electrophysiological techniques, studies in vitro examined the effect of hyperosmolar solutions of sodium chloride (hypertonic saline) on guinea pig airway afferent nerve endings arising from either vagal nodose or jugula...
متن کاملEffect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria
Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 308 1 شماره
صفحات -
تاریخ انتشار 2004